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 as a probe for general relativityfσ8

Evolution of structures:
Dark energy vs Gravity

f =
d ln D

d ln a

General Relativity + CDM: 

 Growth index

 measurement is generally
degenerate with  !

f ≃ Ω
γ
m

Λ γ ≃ 0.55

γ ≡

f
σ8

⇒ fσ8

GR + ΛCDM
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How to measure  ?fσ8 Dark Energy
Gravity
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How to measure  ?fσ8

Velocities are probes of !fσ8 Velocities

Dark Energy
Gravity
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How to measure  ?fσ8

Velocities are probes of !fσ8

Velocity statistics directly depend on :fσ8

⟨v(xi)v(xj)⟩ ∝ (fσ8)2

Image credits: Illustris TNG

3



Estimating velocities from SNe Ia

Type Ia supernovae are exploding white dwarfs!
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Estimating velocities from SNe Ia

Distance modulus:

μ = 5log (dL/10 pc) = m − M

SNe Ia luminosity is corrected for known correlations!

Brighter-slower: higher stretch  brighter SNIax1 ⇒

Brighter-bluer: lower color  brighter SNIac ⇒

Mass step: SN Ia in more massive galaxies are brighter

μobs = mB − (MB −αx1 +βc +ΔM )

Remaining intrinsic scatter  magσμ ∼ 0.12
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The intrinsic scatter of SNe Ia

Main systematic of DES 5-year
dark energy analysis (Vincenzi et

al. 2023)!!!

What about  ???fσ8
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Achromatic
Unrealistic

The G10 model (Guy et al. 2010):
 achromatic /  chromatic

Historically used (Pantheon, Pantheon+)
∼ 70% ∼ 30%

The C11 model (Chotard et al. 2011):
 achromatic /  chromatic

Historically used (Pantheon, Pantheon+)
∼ 30% ∼ 70%

The BS21 model (Brout & Scolnic 2021),
parameters from Popovic et al. 2023 (P23):
Dust-based model
Currently favored by data (DES 5-year)

Bluer Redder
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Rubin-LSST Simulations

We used the SNANA software (Kessler et al. 2009) to simulate the 10 years of the Rubin-LSST survey!

Survey 
parameters

Host catalog

Realistic
 SN Ia LCs

SimulationSNANA
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Survey 
parameters

Host catalog

Realistic
 SN Ia LCs

SimulationSNANA

Survey parameters from LSST survey simulation (OpSim)

SN Ia model: Spectra model (SALT3) + SALT parameter distributions + intrinsic scatter model

Host catalog: Uchuu UniverseMachine N-body simulation (Ishiyama et al. 2021, Aung et al. 2022)
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Simulation: Correlations SN Ia - host
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Simulation: the SNe Ia simulated sample

Simulation up to z ∼ 0.16  ⇒  NSN ∼ O(50 000)
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Simulation: the SNe Ia simulated sample
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Building the Hubble diagram
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Building the Hubble diagram: simple framework

Fit for the Tripp relation along :

, , ,  and  are free parameters.

fσ8

μobs = mB − (M0 − αx1 + βc + ΔM (Mhost; γ))

σ2
μ = σ2

obs
+ σint

2

M0 α β γ σint
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Building the Hubble diagram: BBC framework
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The maximum likelihood method
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The maximum likelihood mehod

The Maximum likelihood method is implemented within the  package (Ravoux, Carreres et al. 2025)

We want to maximize the likelihood function:

L(fσ8; vp) ∝ (2π)− N
2 |C(fσ8)|− 1

2 exp(−
1

2
v

T
p

C(fσ8)−1
vp)
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We want to maximize the likelihood function:

L(fσ8; vp) ∝ (2π)− N
2 |C(fσ8)|− 1

2 exp(−
1

2
v

T
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vp)

C(fσ8) = Cobs + Cvv(fσ8)
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The maximum likelihood mehod: velocity covariance

The covariance of the velocity field is:

⟨vi(ri)vj(rj)⟩ = Cvv
ij ∝ (fσ8)2 ∫

kmax

kmin

P(k)Wij(k; ri, rj)dk

17



The  redshift space parameterσu

Positions are evaluated using  Redshift Space Distorsion

Empirical damping introduced in Koda et al. 2014: 

zobs  ⇒

Du = sinc(kσu)

Cvv
ij ∝ (fσ8)2 ∫

kmax

kmin

P(k)Du(k, σu)
2
Wij(k; ri, rj)dk
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The  redshift space parameterσu

From a fit of true vel. from randomly sampled galaxies of the Uchuu simulation we found σu ≃ 21 Mpc h−1
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Fitting for fσ8
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True vel. fit:
Unbiased fσ8

σfσ8
∼ 5%

COH, G10 and C11:
Similar results for simple and BBC fit
Unbiased fσ8

σfσ8
∼ 13 − 14%

P23 - Simple fit: 

P23 - BBC fit: 

Results for P23 are biased by  !!!

σfσ8
∼ 15%

σfσ8
∼ 11%

> 20%
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Results: Systematics - BS21 parameter variations

Errors on BS21 parameters propagated as in DES 5-year analysis (Vincenzi et al. 2024)

No change in  fit!!!fσ8
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Results: Systematics -  RSD parameter

 ⇨ 

σu

Δσu ∼ 18.5 − 23.5 Mpc h−1 σ
σu

fσ8
∼ 6%
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The BS21 model predicts non-gaussianity that biases the measurement of fσ8

Statistical error represents  of the  error budget75% fσ8

The uncertainty on BS21 parameters is not a major systematic for fσ8

The leading systematic, the uncertainty on the RSD parameter, , leads to an error of  on σu ∼ 6% fσ8

What's next?

Is the BS21 model prediction correct? Will we see non-Gausianities in data?

Is it possible to find a better RSD parametrisation than ?σu
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Thank you for your attention !
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Full  resultsfσ8
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HD residuals
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