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74 Cosmological principle:
o Universe is homogeneous




74 Observations:
- Universe is not exactly homogeneous
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Matter density fluctuations:
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Matter density fluctuations:
I(x) = el 45
p
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Estimating velocities from SNe la

Type la supernovae are exploding white dwarfs!



Estimating velocities from SNe la

Type la supernovae are standard candles!
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Estimating velocities from SNe la

Distance modulus:
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SNe la luminosity is corrected for known correlations!
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Estimating velocities from SNe la
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Estimating velocities from SNe la

Observed redshifts:
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The intrinsic scatter of SNe la

systematic w uncertainty budget

DES-SN5YR, no CMB prior

Main systematic of DES 5-year A (Total): 0152 | M ST Culsec
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dark energy analysis (Vincenzi et g opes Pat dus popd

132 P21 dust pop3
al. 2023)!

Model SN age (W22)
? Change af init guess
« Evolution
What abo ut f0-8 ??? B Evolution
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Mass Location
Oint modelling
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pec eff
SuperNNova training
CC SN prior
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mimmimm SNIRF
Redshift shift
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The intrinsic scatter of SNe la

In this work we considered 4 models of
intrinsic scatter

« Random coherent scatter (COH)
Achromatic
Unrealistic

o The G10 model (Guy et al. 2010):

~ 70% achromatic / ~ 30% chromatic
Historically used (Pantheon, Pantheon+)

o The C11 model (Chotard et al. 20117):
~ 30% achromatic / ~ 70% chromatic
Historically used (Pantheon, Pantheon+)

» The BS21 model (Brout & Scolnic 2021), — SNQO or (S AL()Tl 2
parameters from Popovic et al. 2023 (P23): Bluer color ( ¢) Redder

Dust-based model
Currently favored by data (DES 5-year)
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Rubin-LSST Simulations

We used the SNANA software (Kessler et al. 2009) to simulate the 10 years of the Rubin-LSST survey!

Sy SNANA Simulation I
L . T . . T . T A" ea IS IC
parameters > SN la LCs
<| o\ /o |>
1 a 1
'
model
"

« Survey parameters from LSST survey simulation (OpSim)

?

« SN la model: Spectra model (SALT3) + SALT parameter distributions + intrinsic scatter model

« Host catalog: Uchuu UniverseMachine N-body simulation (/shiyama et al. 2027, Aung et al. 2022)



Simulation: Correlations SN la - host

SALT parameters - host mass correlation from Popovic et al. 2021

SN la rate - host mass correlation Hl Sim. SN la hosts

from Wiseman et al. 2021 Uchuu catalog
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Simulation: the SNe la simulated sample

Simulationupto z ~ 0.16 = Ngn ~ O(50 000)
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Simulation: the SNe la simulated sample

UsingSNelauptoz ~ 0.1 = Ngnx ~ O(6 600)
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Building the Hubble diagram: simple framework

Fit for the Tripp relation along fos:
Hobs = Tt B — ( —a®y + e+ AM (Mhost; ))
2 _ 2 2
O'M I aobs +

, o, B,y and are free parameters.

12



Building the Hubble diagram

Survey
parameters

S\RE

model
Host catalog

¥

LY

<

SNANA

\\\\\\\

Simulation i
b ' Realistic
SN laLCs
>
LCs fitting SALT
——p| parameters
mpg,xy,C
Simple
framework

Hubble
diagram

13



Building the Hubble diagram

Survey SNANA Simulation -
LY L T T T T T 1 & ea IS IC
parameters ' SN la LCs
<| o\ /o0 |[>
] . 1
S\RE ! 4
model LCs fitting SALT
| vt | ——Jp| parameters
oot mp,xy,C
Host catalog
_\ / < Simple
Bias framework
correction
framework
Corrected

distance modulus

)

Hubble
diagram




Building the Hubble diagram: BBC framework
Hobs,BBC — T B — ( — @y + e+ AM (Mhost; )) + 5c0rr.

2 2 2
au_aobs+

14



Building the Hubble diagram: BBC framework
Hobs,BBC — T B — ( — @y + e+ AM (Mhost; )) + 5c0rr.
7= Ot

Jcorr. IS Obtained by:

14



Building the Hubble diagram: BBC framework
Hobs,BBC — T B — ( — @y + e+ AM (Mhost; )) + 5c0rr.
7= Ot

Jcorr. IS Obtained by:

« Running an extra-large simulation (~ 40 x LSST) and fitting the Hubble diagram

14



Building the Hubble diagram: BBC framework
Hobs,BBC — T B — ( — @y + e+ AM (Mhost; )) + 5c0rr.
7= Ot

Jcorr. IS Obtained by:

« Running an extra-large simulation (~ 40 x LSST) and fitting the Hubble diagram

« Binning over the parameters p = {Zobs, 1, ¢, Mpost }

14



Building the Hubble diagram: BBC framework
Mobs,BBC = mp — (/) — @y + ¢+ Apr (Mpost; 7)) + Ocour.
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Building the Hubble diagram: BBC framework
Hobs,BBC — T B — ( — @y + e+ AM (Mhost; )) + 5c0rr.
7= Ot

Jcorr. IS Obtained by:

Running an extra-large simulation (~ 40x LSST) and fitting the Hubble diagram

Binning over the parameters p = {Zypbs, €1, ¢, Mhost }

Computing the correction in each cell §¢orr. = (fobs — ,ufid>ceu

Interpolate over the cells to obtain .o (P)

, 7, v and are fitted prior to fog
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The maximum likelihood mehod

@,
The Maximum likelihood method is implemented within the €EHIBIIR) package (Ravoux, Carreres et al. 2025)

We want to maximize the likelihood function:

E(fosivy) o (20) F[C(ow] Fexp (- J0ECf) o)
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The maximum likelihood mehod

@,
The Maximum likelihood method is implemented within the €EHIBIIR) package (Ravoux, Carreres et al. 2025)

We want to maximize the likelihood function:

E(fosivy) o (20) F[C(ow] Fexp (- J0ECf) o)

C(fos) = C° 4 C*(fos)

16



The maximum likelihood mehod: velocity covariance

The covariance of the velocity field is:

kmax
(03(x)v(x)) = CF ox (o)’ / P(k)Wi;(k; T3, )k

kmin

Credits: Corentin Ravoux
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The o, redshift space parameter

Positions are evaluated using zo,s = Redshift Space Distorsion

Empirical damping introduced in Koda et al. 2014: D,, = sinc(ko,)

kmax
CYY o ( fog)? / P(k) *Wii(k; i, r;)dk

kmin

18



The o, redshift space parameter

From a fit of true vel. from randomly sampled galaxies of the Uchuu simulation we found o, >~ 21 Mpc h—1

—== 21 Mpc h!

1000 2000 3000 4000 5000 6000 7000 8000 9000
Ngal
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Results: Estimated velocities
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Results: Estimated velocities

I Simple fit Scomn Scio
: BBC f|t ﬁ‘Simp = 0017 ,D‘Simp - 0027
OSimp = .998 OSimp — 0.983
YSimp = -0.041 YSimp = -0.040
KSimp = 0.056 KSimp = 0.076

UBBC = 0.027 . HUBBC = 0.027
OBBC = 0.953 | \ 0.
veec = -0.040

KBBC = 0.049

SCll SP23
HSimp = Y. HSimp

OSimp = U. OSimp

YSimp = . /Simp
KSimp = KSimp
HUBBC
OBBC
YBBC
KBBC

—4 —2 0 2
(0 - Utrue)/(f'v (i’ - Utrue)/ v




Results: foyg fit for different scatter models
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e True vel. fit;
Unbiased fosg
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Results: foyg fit for different scatter models

e True vel. fit;
Unbiased fosg
O'fag e 5%

51— %‘H

« COH,G10and C11:
Similar results for simple and BBC fit
Unbiased fog
O fos ~ 13 — 14%

w True vel. fit
¢  Simple fit
¢ BBC fit

g 5
|| — g
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Results: foyg fit for different scatter models

e True vel. fit;
Unbiased fosg
O'fag e 5%

I |

« COH,G10and C11:
Similar results for simple and BBC fit
Unbiased fog

~ 13 —-14
oI & % True vel. fit
o P23 - Simple fit: O fog ™ ]_5% i :Bmcplztﬁt
P23 - BBC fit: 0 5, ~ 11%

Results for P23 are biased by > 20% !!!




Results: Systematics - BS21 parameter variations

Errors on BS21 parameters propagated as in DES 5-year analysis (Vincenzi et al. 2024)

No change in fog fit!!!
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Results: Systematics - BS21 parameter variations

Errors on BS21 parameters propagated as in DES 5-year analysis (Vincenzi et al. 2024)

No change in fog fit!!!

(fos)/ (fos)gq | - <J:;chrs>

BBC fit 0.649 = 0.028 12.2%

BBC + int. scat. cov fit || 0.647 + 0.028 12.2%

22



Results: Systematics - o, RSD parameter

Ao, ~ 185 —23.5Mpch = 0%8 ~ 6%

Spas true vel. fit results

Spos simple fit results
Sp23 BBC fit results
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Conclusion

Estimated PVs are on average unbiased when using the BBC method compared to the simple method

The BS21 model predicts non-gaussianity that biases the measurement of fog

Statistical error represents 75% of the fog error budget

The uncertainty on BS21 parameters is not a major systematic for fog

The leading systematic, the uncertainty on the RSD parameter, o, leads to an error of ~ 6% on fog

What's next?

« Is the BS21 model prediction correct? Will we see non-Gausianities in data?

o Is it possible to find a better RSD parametrisation than ,,?
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Thank you for your attention !
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Full fog results

Models

Al
SRND

(1
SG10
Sc11

Sp23

1.008 + 0.015
1.000 £ 0.018
1.001 £ 0.017

0.999 + 0.013

Standard fit

0.979 £ 0.023
1.013 £ 0.047
0.999 £+ 0.029

0.834 £+ 0.035

(fos)/ (fos)sa

0.983 + 0.024
1.014 £+ 0.049
1.000 £+ 0.026

0.805 + 0.024

BBC fit
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o, syst. for G10

®  Spog true fit results
®  Spos standard fit results
®  Spos BBC fit results




HD residuals

B Simple fit Scom

[ BBC fit Osig = 0.129
OBBC — 0].29

1000

Sci
ostq = 0.112
OBBC — 0.110

—-0.4 —0.2 0.0

Ap

SGlO
Jstd — 0.123
OBBC — 0.123

SP23
ostq = 0.123
OBBC — 0.118
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